Communication

Dumbbell-Shaped Nanocircular RNAs for RNA Interference

Naoko Abe, Hiroshi Abe, and Yoshihiro Ito

J. Am. Chem. Soc., 2007, 129 (49), 15108-15109 • DOI: 10.1021/ja0754453 • Publication Date (Web): 15 November 2007

Downloaded from http://pubs.acs.org on March 22, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
RNA interference (RNAi) is a potent and highly specific gene-silencing phenomenon that is initiated or triggered by double-stranded RNAs (dsRNAs). Shortly after the development of RNAi, small interfering RNAs (siRNAs), which are 21 nucleotides in length with a 3′ nucleotide overhang, were shown to be very effective in mammalian cells. Much effort has been dedicated to the application of siRNAs, both as biological tools and as therapeutic agents. These approaches can be divided into two main classes. In the first, DNA vectors encoding the RNA polymerase II or III promoter are used to transcribe siRNAs or short hairpin RNAs (shRNAs) in mammalian cells. In the second, chemically synthesized siRNA is introduced directly into cells. Although the vector system is suitable for biological experiments, there are safety problems in clinical applications. Currently, synthetic siRNA would be the method of choice for clinical purposes. However, natural RNA strands are quickly degraded in biological fluids. Chemically synthesized unnatural nucleotides have been developed and introduced into the siRNA strand. For example, modification of the ribose moiety with a 2′-deoxy, 2′-O-methyl, or 2′-fluoro group or modification of the phosphate backbone has been examined. Although these modifications improve the stability of siRNA in serum, they often cause a decrease in RNAi activity. There is also concern that unnatural RNA derivatives are toxic in the human body. A method to stabilize nontoxic natural RNA strands should be very useful for applications in RNAi technology.

DNA dumbbells, which consist of a double-helical stem closed by two hairpin loops, have been synthesized historically as physical chimera dumbbells for antisense applications. A dumbbell-shaped RNA aptamer that contains two deoxynucleotides and DNA/RNA chimera dumbbells for antisense applications has been reported. Because 3′-exonuclease is a major enzyme involved in the degradation of nucleic acids in vivo, RNA dumbbells are expected to be more stable than dsRNA. However, to our knowledge, this design has never been tested as an RNAi strategy. A key point to be determined is whether an RNA dumbbell is cleaved by the Dicer enzyme to generate dsRNA, as shRNA is, to achieve an RNAi effect in cells (Figure 1).

To test this idea, we designed and synthesized circular RNA dumbbells that contain a stem sequence encoding the firefly luciferase gene and two 9-mer loops (Figure 2a). The loop sequence is used widely in shRNA expression systems. The stem sequences were designed according to a previous report, which showed that the expressed shRNA sequence worked well. We added one more loop sequence on the other end of this shRNA to form dumbbell structures. To identify the appropriate length of the stem, four dumbbells of differing stem lengths, ranging from 15 to 27 base pairs (bp), were designed and synthesized (Figures 2a and S1). To construct the circular RNA dumbbell Db-23, dsRNA L-23 was closed at both ends with the loop sequences using T4 RNA ligase (Figure S2). A newly formed band that migrated more slowly than the starting single-stranded 32-mer appeared in polyacrylamide gel electrophoresis (PAGE) analysis (Figure S2, lane 6). The new band was inferred to be a circular RNA by comparing it with a synthetic hairpin-shaped RNA (Figure S3). These observations confirmed that RNA dumbbells can be prepared with a good yield from two RNA strands by treatment with T4 RNA ligase. All other dumbbells were prepared by the same method.

The circular dichroism (CD) spectrum of Db-23 was measured and compared with that of its linear counterpart (L-23) and an siRNA (siRNA-1). (a) Sequence and structure of RNAs. (b, upper panel) Digestion of RNAs with SVPD. (c, upper panel) Digestion of RNAs with 20% human serum. (b and c, lower panels) Native PAGE analysis of the reaction. Quantification of the longest sequences of Db-23 (circles), L-23 (triangles), and siRNA-1 (squares) in the upper panel.
To determine its biological stability, the RNA dumbbell Db-23 was treated with snake venom phosphodiesterase (SVPD), a 3' exonuclease. Db-23 showed higher stability compared with that of its linear counterpart, L-23 or an siRNA control, siRNA-1 (Figure 2a,b). After 2 h incubation, 36% of Db-23 retained its sequence in contrast to 6% of L-23. In this condition, no siRNA-1 was detected.

Next, we tested whether the RNA dumbbells can be cleaved by the Dicer enzyme to form dsRNA, which can activate RNAi pathways. Recombinant human Dicer enzyme was used to treat four synthetic dumbbells, whose stem lengths differed (Db-15, Db-19, Db-23, and Db-27). Corresponding linear dsRNAs (L-15, L-19, L-23, and L-27, respectively) were tested as a control. As shown in Figure 3, dsRNAs of about 20 bp were produced from all dumbbells except Db-15, although RNAs shorter than 20 bp were observed as the major products. Under the same reaction conditions, linear dsRNAs were digested almost completely to shorter sequences of about 20 bp within 1 h (Figure 3). In contrast, the RNA dumbbells were digested much more slowly. This slow processing could be explained by structural evidence that Dicer recognizes the helical end of the RNA before digestion. As the stem length increased, the rate of digestion of the dumbbells increased. Db-27 was digested almost completely after 6 h. In contrast, Db-15 and Db-19 were digested only partially even after 20 h.

To measure the RNAi activity of the RNA dumbbells, all dumbbells (Db-15 to Db-27) were analyzed. RNAs (25 nM) and the two vectors were cotransfected into NIH/3T3 cells, and the expression levels of the two luciferase genes were measured. The RNAi activity of the dumbbells and their linear counterparts (L-15, L-19, L-23, and siRNA-1) were incubated in 20% human serum for 2 h, in contrast to 6% of L-23 and 8% of siRNA-1. We conclude that RNA dumbbells can be stabilized by their structures in biological environments.

Finally, the interference activities of Db-23 and the siRNA sequence (siRNA-1, Figure 2a) that targets the same region of the gene were compared over a longer period of 5 days (Figure 4b). Both RNAs showed similar suppression levels on days 1 and 3. However, on day 5, the suppression activity of Db-23 was 1.5-fold more potent than that of siRNA-1. These results confirm that an RNA dumbbell has prolonged RNAi activity. This effect could be induced by the slow release of the siRNA species from the dumbbell.

In conclusion, we have demonstrated that, despite their natural RNA strands, dumbbell-shaped RNAs withstand enzymatic degradation and offer prolonged RNAi activity because of the shape of the molecule, an endless structure. Our ongoing work is aimed at improving this loop structure.

Acknowledgment. Y.I. and H.A. were supported by Nano-Science and Technology Research Group, and Chemical Biology Research Group at RIKEN.

Supporting Information Available: Experimental details and figures. This material is available free of charge via the Internet at http://pubs.acs.org.

References

8. (a) Ivanov, V. V.; Minchen, Le; Scholzak, A.; Poletaje, A. Biopolymers 1973, 12, 89–110.